Uncertainty Principles for Compact Groups

نویسنده

  • GORJAN ALAGIC
چکیده

We establish an operator-theoretic uncertainty principle over arbitrary compact groups, generalizing several previous results. As a consequence, we show that every nonzero square-integrable function f on a compact group G satisfies μ(supp f) · P ρ∈Ĝ dρ rk f̂(ρ) ≥ 1. For finite groups, our principle implies the following: if P and R are projection operators on the group algebra CG such that P commutes with projection onto each group element, and R commutes with left multiplication, then ‖PR ‖ ≤ (rkP rkR)/|G|.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended Compact Genetic Algorithm for Milk Run Problem with Time Windows and Inventory Uncertainty

In this paper, we introduce a model  to optimization of milk run system that is one of VRP problem with time window and uncertainty in inventory. This approach led to the routes with minimum cost of transportation while satisfying all inventory in a given bounded set of uncertainty .The problem is formulated as a robust optimization problem. Since the resulted problem illustrates that grows up ...

متن کامل

Uncertainty Principles on Compact Riemannian Manifolds

Based on a result of Rösler and Voit for ultraspherical polynomials, we derive an uncertainty principle for compact Riemannian manifolds M . The frequency variance of a function in L(M) is therein defined by means of the radial part of the Laplace-Beltrami operator. The proof of the uncertainty rests upon Dunkl theory. In particular, a special differential-difference operator is constructed whi...

متن کامل

The Uncertainty Principle for Gelfand Pairs

We extend the classical Uncertainty Principle to the context of Gelfand pairs. The Gelfand pair setting includes riemannian symmetric spaces, compact topological groups, and locally compact abelian groups. If the locally compact abelian group is Rn we recover a sharp form of the classical Heisenberg uncertainty principle. Section

متن کامل

Uncertainty principles generated by Lie - groups

Uncertainty principles generated by Lie-groups Abstract: For unbounded operators A, B and C in general, the commutation relation [A, B] = C does not lead to the uncertainty relation ‖Au‖‖Bu‖ ≥ 1 2 |〈Cu, u〉|. If A, B and C are part of the generators of a unitary representation of a Lie group then the uncertainty principle above holds.

متن کامل

Noncommutative Uncertainty Principles

Abstract The classical uncertainty principles deal with functions on abelian groups. In this paper, we discuss the uncertainty principles for finite index subfactors which include the cases for finite groups and finite dimensional Kac algebras. We prove the Hausdorff-Young inequality, Young’s inequality, the Hirschman-Beckner uncertainty principle, the Donoho-Stark uncertainty principle. We cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008